عدد النواتج الممكنة لرمي مكعب خمس مرات يساوي

هل عدد النتائج المحتملة لرمي النرد خمس مرات هو نفسه

حساب عدد الاحتمالات

حساب عدد الاحتمالات
حساب عدد الاحتمالات

الحصص هي شرح طريقة للتعبير عن النسبة بين عدد النتائج الإيجابية في حدث معين وعدد النتائج غير المرغوب فيها. فيما يلي بعض المفاهيم المفيدة عند فحص وحساب الاحتمالات كما يلي[1]

  • غرفة العينة هي جميع النتائج المحتملة التي يمكن أن تحدث في التجربة.
  • الإجراء مجموعة محددة من النتائج المحتملة التي يمكن أن تحدث في التجربة.
  • الاحتمالية هي نسبة عدد النتائج المحتملة في التجربة إلى عدد العناصر في فضاء العينة.

على سبيل المثال، إذا تم رمي عملة معدنية مرة واحدة، فيمكن أن تكون النتيجة سقوط العملة على وجه الصورة أو على وجه الكتابة، وهذا يعني أن عدد الاحتمالات لهذه التجربة هو 2، واحتمال ذلك أن يظهر وجه الصورة هو ½، تمامًا مثل احتمال ظهور وجه الحروف أيضًا.

عدد النتائج المحتملة لرمي النرد خمس مرات هو

عدد النتائج المحتملة لرمي النرد خمس مرات هو
عدد النتائج المحتملة لرمي النرد خمس مرات هو

عدد النتائج المحتملة لرمي النرد 5 مرات يساوي 7776 نتيجة محتملة، حيث أن حجر النرد يحتوي على ستة وجوه وكل وجه يحتوي على رقم من 1 إلى الرقم 6، وبالتالي في كل لفة يموت، من المتوقع 6 نتائج، نظرًا لأن عدد النتائج المحتملة في البداية هو 6 وفي المرة الثانية يكون عدد النتائج المحتملة 6 أيضًا، وهكذا دواليك حتى يتم طرح القطعة 5 مرات متتالية، وبالتالي فإن عدد النتائج المحتملة هو 6 مضروبًا في 6 خمس مرات، والنتيجة هي 7776 نتيجة ممكنة. فيما يلي توضيح لكيفية حساب عدد النتائج المحتملة في التجربة[2]

عدد النتائج المحتملة = عدد النتائج في القائمة الأولى x عدد النتائج في القائمة الثانية x عدد النتائج في القائمة الثالثة x عدد النتائج في القائمة الرابعة x عدد النتائج في القائمة الخامسة

عدد النتائج المحتملة = عدد النتائج في لفة، عدد التكرارات للحدث

عدد النتائج في القائمة الأولى = 6 نتائج محتملة
عدد النتائج في الرمية الثانية = 6 نتائج محتملة
عدد النتائج في الجولة الثالثة = 6 نتائج محتملة
عدد النتائج في الرمية الرابعة = 6 نتائج محتملة
عدد النتائج في الرمية الخامسة = 6 نتائج محتملة

عدد النتائج المحتملة = عدد النتائج في لفة، عدد التكرارات للحدث
عدد النتائج المحتملة = 56
عدد النتائج المحتملة = 6 × 6 × 6 × 6 × 6
عدد النتائج الممكنة = 7776 نتيجة محتملة

كم عدد النقاط التي يمتلكها نردان

أمثلة على حساب عدد النتائج المحتملة

أمثلة على حساب عدد النتائج المحتملة
أمثلة على حساب عدد النتائج المحتملة

لحساب عدد النتائج المحتملة لتجارب أو أحداث مختلفة

  • مثال 1 احسب عدد النتائج المحتملة لرمي قطعة نقود ثلاث مرات
    شرح طريقة الحل
    عدد النتائج في الرمية الأولى = نتيجتان محتملتان
    عدد النتائج في الرمية الثانية = نتيجتان محتملتان
    عدد النتائج في الجولة الثالثة = نتيجتان محتملتان
    عدد النتائج المحتملة = عدد النتائج في لفة، عدد التكرارات للحدث
    عدد النتائج الممكنة = 32
    عدد النتائج المحتملة = 2 × 2 × 2
    عدد النتائج المحتملة = 8 نتائج محتملة
  • المثال الثاني صندوق يحتوي على ثلاث كرات، بما في ذلك كرة حمراء وكرة صفراء وكرة بيضاء، احسب عدد النتائج المحتملة عند سحب كرتين من الصندوق.
    شرح طريقة الحل
    عدد النتائج في التجربة الأولى = 3 نتائج محتملة
    عدد النتائج في التجربة الثانية = نتيجتان محتملتان
    عدد النتائج المحتملة في التجربة الثانية هو 2 لأنه تم سحب كرة واحدة من الصندوق وبقيت كرتان فقط
    عدد النتائج المحتملة = عدد النتائج في التجربة عدد مرات تكرار الحدث
    عدد النتائج المحتملة = 1 + 13 + 12
    عدد النتائج المحتملة = 1 + 3 + 2
    عدد النتائج المحتملة = 6 نتائج محتملة
  • مثال 3 حساب النتائج المحتملة لسبع لفات من النرد
    شرح طريقة الحل
    عدد النتائج في الرمية الأولى = 6 نتائج محتملة
    عدد النتائج في الرمية الثانية = 6 نتائج محتملة
    عدد النتائج في الجولة الثالثة = 6 نتائج محتملة
    عدد النتائج في الرمية الرابعة = 6 نتائج محتملة
    عدد النتائج في الرمية الخامسة = 6 نتائج محتملة
    عدد النتائج في الرمية السادسة = 6 نتائج محتملة
    عدد النتائج في الرمية السابعة = 6 نتائج محتملة
    عدد النتائج المحتملة = عدد النتائج في لفة، عدد التكرارات للحدث
    عدد النتائج الممكنة = 76
    عدد النتائج المحتملة = 6 × 6 × 6 × 6 × 6 × 6 × 6
    عدد النتائج الممكنة = 279،936 نتيجة محتملة
  • المثال الرابع صندوق يحتوي على خمس كرات، بما في ذلك كرة حمراء، وكرة صفراء، وكرة بيضاء، وكرة سوداء، وكرة خضراء. احسب عدد النتائج المحتملة عند سحب ثلاث كرات من الصندوق على التوالي.
    شرح طريقة الحل
    عدد النتائج في التجربة الأولى = 5 نتائج محتملة
    عدد النتائج في التجربة الثانية = 4 نتائج محتملة
    عدد النتائج في التجربة الثانية = 3 نتائج محتملة
    عدد النتائج المحتملة في التجربة الثانية هو 4 لأن كرة واحدة تم سحبها من الصندوق وبقيت 4 كرات فقط، في حين أن عدد النتائج المحتملة في التجربة الثالثة هو 3 لأنه تم سحب كرتين من الصندوق و 3 كرات فقط يبقى.
    عدد النتائج المحتملة = عدد النتائج في التجربة عدد مرات تكرار الحدث
    عدد النتائج المحتملة = عدد النتائج في المحاولة الأولى × عدد النتائج في المحاولة الثانية × عدد النتائج في المحاولة الثالثة
    عدد النتائج المحتملة = 5 × 4 × 3
    عدد النتائج الممكنة = 60 نتيجة محتملة

بنهاية هذه المقالة، علمنا أن عدد النتائج المحتملة عند رمي النرد خمس مرات يساوي 7776 نتيجة محتملة. أوضحنا أيضًا كيف يتم حساب عدد الاحتمالات الممكنة لكل تجربة أو حدث، وذكرنا الخطوات التفصيلية لحساب عدد الاحتمالات للأحداث المختلفة.

  1. ^wikihow.com، الاحتمالات والإحصاءات كيف يتم حساب الاحتمالات 3.7.2024
  2. ^science.com، عدد التركيبات 3.7.2024
Scroll to Top